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The primitive model of ionic systems is investigated within a field-theoretic description for the whole range
of diameter-, �, and charge, Z ratios of the two ionic species. Two order parameters �OP� are identified. The
relation of the OP’s to physically relevant quantities is nontrivial. Each OP is a linear combination of the charge
density and the number-density waves. Instabilities of the disordered phase associated with the two OP’s are
determined in the mean-field approximation �MF�. In MF a gas-liquid separation occurs for any Z and ��1.
In addition, an instability with respect to various types of periodic ordering of the two kinds of ions is found.
Depending on � and Z, one or the other transition is metastable in different thermodynamic states. For
sufficiently large size disparity we find a sequence of fluid-crystal-fluid transitions for the increasing volume
fraction of ions, in agreement with experimental observations. The instabilities found in MF represent weak
ordering of the most probable instantaneous states, and are identified with structural loci associated with
pretransitional effects.
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I. INTRODUCTION

Universal features of collective phenomena can be deter-
mined within the framework of statistical mechanics with the
interaction potentials approximated by highly simplified ge-
neric models. The generic model that allows for a prediction
of general features of the collective phenomena in ionic sys-
tems as diverse as molten salts, electrolytes, room-
temperature ionic liquids, as well as systems containing
charged nanoparticles �including proteins�, and/or charged
colloidal particles, is the primitive model �PM�. In the PM
ions are represented by charged hard spheres, and the solvent
�if present� is taken into account only through the dielectric
constant �1–3�. In real systems the molecular structure of the
solvent as well as multipole moments and polarizability of
ions and solvent molecules affect the collective phenomena
in the way that depends significantly on the specific proper-
ties of the ions and the solvent �4,5�, and is far from being
understood. To identify and analyze specific effects in par-
ticular cases, however, one should know, in the first place,
the phase diagram and structure in the generic case, where
such effects are not present.

Despite the simplicity of the interaction potential in the
PM, the dependence of the phase diagrams and the correla-
tion functions on the charge

Z =
e+

�e−�
, �1�

and the diameter

� =
�+

�−
�2�

ratios of the two ionic species, respectively, is a largely un-
explored problem. Until very recently the theoretical studies
concentrated mainly on the restricted primitive model �RPM�
�1–3,6�, where Z=�=1. In the RPM a gas-liquid separation

occurs at low densities, and the bcc ionic crystal occurs at
higher densities and sufficiently low temperatures. At still
higher densities the fcc crystal with and without substitu-
tional order at low and at high temperatures, respectively, is
stable �3,7�.

Although much studied, the RPM is a quite artificial
model, in the sense that no real ionic fluid has anions and
cations of exactly the same size, although the size disparity is
rather small in some, such as potassium chloride �KCl�.
When one assumes full anion-cation symmetry, as in the
RPM, there is a remarkable decoupling of the Ornstein-
Zernike �OZ� integral equations that describe the density-
density correlation function and the charge-charge correla-
tion function, respectively. The two correlation functions are
still indirectly coupled through the “closure relations” that
must be added to the OZ equations to yield a closed set of
equations, and the different approximations that have come
into standard use in solving the primitive-model OZ
equations—the mean spherical approximation, the hypernet-
ted chain approximation, etc.—are defined by different clo-
sure relations �1�. The total and the direct correlation func-
tion in the liquid theory are directly related to the
�connected� correlation function and the vertex function, re-
spectively, in the field theory �FT�, and similar decoupling of
the analogs of the OZ equations in the FT approach is found
�3�.

As soon as there is any degree of asymmetry, however,
the density-density and charge-charge correlation functions
are directly coupled, as are the OZ integral equations for
these two functions �1�, as well as their analogs in the FT
�3,8�. We shall not go through the details of this case here,
and the interested reader will find those details in Sec. II B of
Ref. �1�. There is one aspect of the results there that is worth
noting here explicitly, however. If there is only a very small
degree of asymmetry—for example, if the effective diam-
eters of the anions and cations are very nearly the same in a
1-1 electrolyte, one would expect that the RPM equations
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would be “almost” satisfied in some sense, despite the direct
coupling one finds in the asymmetric case. This turns out to
be the case—one finds that deviations from the RPM result
only appear very close to the critical point for very small
asymmetries. The smaller the deviations, the closer one must
be to the critical point �cp� to see them. Recent theoretical
�9–17� and simulation �18–24� results show that the PM with
a small and moderate asymmetry exhibits qualitatively the
same critical behavior as the RPM. In the asymmetric case
the cp is shifted to lower temperatures and number densities
�but higher volume fractions� �15–24�. We expect to make
further contact between our FT treatment for asymmetric
ionic fluids and the general results of Ref. �1� concerning the
critical behavior in future work. As far as we know, the effect
of the size and charge asymmetry on the gas-solid and liquid-
solid transitions attracted much less attention so far.

Despite our general insight into the asymmetric case that
has come out of the work of Ref. �1�, and intensive studies of
highly charged colloids �25–35�, the case of the extreme
asymmetry Z ,�→� is not fully understood. This is because
on the theoretical side the effect of approximations and as-
sumptions on the results may be significant. In experiments
�29–31,34,36� the interactions differ from the PM, and the
role of specific interactions and/or of the solvent properties is
not known in full detail. Moreover, results may be sensitive
to impurities, nonequilibrium effects, etc. Last but not least,
it is very difficult to obtain reliable simulation results for the
phase diagram when Z ,�→�. To ensure charge neutrality Z
anions must be present per each cation, and in studies of
collective phenomena the number of cations N+ must be
large. Typical experiments correspond to Z�104, i.e., to
�104N+ ions in the simulation box. Because of the above
reasons, there is no consensus concerning the phase behavior
in the PM in the case of the extreme asymmetry, and the
results of some experiments �30,34� are considered as con-
troversial �33,35�. The controversy concerns mainly the oc-
currence of the gas-liquid separation at room temperature in
the case of monovalent counterions. Simulations indicate
that at room temperature the gas-liquid separation for
monovalent counterions does not occur, but occurs for diva-
lent counterions �33�. Preliminary field-theoretic results �8�
indicate that when the size and the charge of the cation are
several orders of magnitude larger than the size and the
charge of the anion, the gas-liquid type phase separation is
preempted by a transition between gas and a colloidal crystal
for a large range of temperatures, including room tempera-
ture �8�. The predictions of Ref. �8� are limited to the mean-
field �MF� approximation, and the effect of fluctuations on
the transition lines remains to be determined along the same
lines as in the case of the RPM �37�. The phase behavior for
higher volume fractions is also not quite clear. Many studies
suggest a transition between the fluid and the bcc crystal,
next the transition between the bcc and the fcc crystals, and
finally a reentrant melting �or a gel or glass formation� when
the volume fraction of colloidal particles increases at room
temperature �36,38,39�. Also fluid-bcc-fluid transitions were
found for increasing volume fraction of colloid particles for
Z�500 and ��104 �40�. Additional counterions and coions
significantly influence the phase behavior �6,27,28,36,39,41�.
Note that the above phase behavior is quite different than the
behavior in the RPM.

The way the global phase diagram evolves when the
asymmetry parameters are varied has not been systematically
investigated yet. The values of Z and � have a strong effect
on the formation of ordered periodic structures of a crystal
type. Coulomb interactions support structures in which the
positive charges are compensated by the negative charges in
regions as small as possible. On the other hand, precise com-
pensation of charges in small regions may lead to an increase
of entropy. The electrostatic and the entropic contributions to
the grand potential both depend on the geometrical con-
straints. These constraints are due to a packing of Z spheres
of a diameter �− and one sphere of a diameter �+=��− into
a charge-neutral aggregate, and a possibility of periodically
repeating this aggregate in space. Such an ordered structure
is favored compared to the disordered phase when the en-
tropic contribution is sufficiently small compared to the elec-
trostatic energy. A combination of the geometric constraints
and the charge-neutrality condition for some values of Z and
� may promote ordering, while in other cases it may sup-
press ordering. The competition between the periodic order-
ing and the phase separation also depends on Z and �. Thus,
rich and complex phase behavior in the parameter space
�� ,T* ;Z ,�� may be expected, where � and T* are the volume
fraction of ions and temperature in the standard reduced �di-
mensionless� units �1,3�, defined in the next section. Depend-
ing on the values of Z and �, phase equilibria on the �� ,T*�
phase diagram may include some �or all� of the following
transitions: gas-crystal, gas-liquid, liquid-crystal, crystal-
glass, crystal-gel or a transition between different crystalline
phases. For different Z and � the above phase equilibria may
occur in quite different parts of the �� ,T*� phase diagram.

Some insight into the dependence of the phase behavior
on Z and � can be gained from studies of pretransitional
effects in the disordered phase. Such effects may be divided
into two categories: effects associated with the gas-liquid
separation and effects associated with the crystallization.
Theoretical studies �1,3,15,16,42� emphasize the role of clus-
ter formation for the gas-liquid separation in ionic systems.
Recent Monte Carlo �MC� �19–24,43–46�, molecular dynam-
ics �MD� �47� and Brownian dynamics �BD� �48� simulation
studies provide interesting information on clustering in the
size- and charge-asymmetric PM. In Refs. �43,44,47,48� the
simulations were performed at room temperature for several
values of the volume fraction of the larger ions, for several
sizes of both ionic species �size ratio 5-10�, and for several
values of the charge on the larger ion �10-20 elementary
charges�. The cluster formation was studied for monovalent,
divalent, and trivalent counterions for fixed values of the
remaining parameters. In equilibrium the instantaneous
structures are much more uniform in the case of monovalent
counterions than in the other cases, where “living” clusters
containing two or more large ions are formed �44,48�. For
trivalent counterions a substantial fraction of the clusters was
found to be neutral. Attractions between the neutral clusters
are similar to the attractions between molecules, and may
lead to the phase separation. The dependence on valency of
counterions for a fixed charge on the larger ion and for fixed
temperature is equivalent to a dependence on Z and T*. The
question of the region in the parameter space �� ,T* ;Z ,��
corresponding to a formation of neutral clusters remains
open.
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Pretransitional effects associated with weak long-range
ordering are a subject of the present study. By analogy with
the short-range ordering of the instantaneous states de-
scribed above, we expect that such effects include long-
range ordering of the instantaneous states. In the long-range
ordered instantaneous states a local deviation from the uni-
form distribution of ions is periodically repeated in space.

In this work we present an overview of the collective
phenomena in the PM for the whole range of Z and �. Our
FT analysis allows us to identify the dominant deviations
from the uniform distribution of ions. We find structural lines
that separate the stability region of the disordered phase on
the �� ,T*� phase diagram in the high-temperature part where
the homogeneous instantaneous states are more probable
than periodic states with small amplitude, and in the low-T*

part, where the most probable instantaneous states exhibit
weak long-range order. At the structural line the amplitude of
the periodic deviation from the uniform distribution of ions
in the most probable instantaneous states increases continu-
ously from zero. We stress that the structural line is neither a
phase transition in the thermodynamic sense, nor a true spin-
odal. Determination of the probability of the periodic instan-
taneous states with large amplitudes, as well as the determi-
nation of the phase transitions requires further studies, for
which our analysis should serve as a starting point.

In Sec. II we describe the field theory for the PM. We
introduce the concept of the structural line and show that this
line coincides with the MF approximation for the spinodal
line. In Sec. III general expressions for the eigenmodes and
boundary of stability of the uniform phase in MF �structural
lines� are given. The nature of the eigenmodes is discussed,
and the dominant instantaneous states are identified in the
same section. Section IV is devoted to the case of equal
sizes. MF-spinodal �structural� lines associated with the gas-
liquid separation are described in detail in Sec. V, and in Sec.
VI the structural lines associated with periodic ordering are
discussed. Explicit results for representative values of Z and
� are also presented in these two sections. A short summary
is given in Sec. VII.

II. FIELD-THEORETIC DESCRIPTION OF THE
PRIMITIVE MODEL

A. Coarse graining of the PM

We consider a mixture of positively charged ions of a
charge e+ and diameter �+, and negatively charged ions of a
charge e−=−�e−� and diameter �− in a structureless, incom-
pressible solvent. In the PM the interaction potential of a pair
� ,�, where the Greek indices denote � or �, is infinite for
distances smaller than ��+��, i.e., we assume hard-core re-
pulsions. The electrostatic potentials V���r1−r2� between
different pairs of ions � ,� are the following:

V���r� =
e�e�

Dr
	�r − ���� , �3�

where

��� =
1

2
��� + ��� , �4�

and D is the dielectric constant of the solvent. The 	 func-
tions above prevent contributions to the electrostatic energy
coming from overlapping hard spheres, i.e., we do not in-
clude the electrostatic self-energy.

In the field-theoretic approach we consider local densities
of the ionic species 
+�r� and 
−�r�, and we include only
smooth functions. For particular fields 
+�r� ,
−�r� we as-
sume that the electrostatic energy assumes the form

U�
+,
−� =
1

2
� dr1� dr2
��r1�V���r1 − r2�
��r2� , �5�

where summation convention for the Greek indices is used
here and below. The probability that the local densities as-
sume a particular form 
+�r� ,
−�r� is proportional to
exp�−��U�
+ ,
−�−�+N+−�−N−��, where N+=�dr
+�r� and
N−=�dr
−�r� are the number of positive charged and nega-
tive charged ions respectively. The chemical potentials of the
two ionic species, �+ and �−, are not independent, and have
to be consistent with the requirement of charge neutrality,

� dr
+�r�e+ =� dr
−�r��e−� . �6�

Whereas the charge neutrality condition must be obeyed in
macroscopic regions, it can be violated locally, in regions
containing a small number of ions. The probability that the
local densities assume the form 
+�r� ,
−�r� is also propor-
tional to the number of all microscopic states compatible
with 
+�r� ,
−�r�. The number of all states can be written in
the form exp��TS�, where �= �kT�−1, and where S, T, and k
are the entropy, temperature, and the Boltzmann constant,
respectively. From the above it follows that the Boltzmann
factor assumes the form

p�
+,
−� = �−1 exp�− �MF�
+,
−�� , �7�

where

� =� D
+� D
− exp�− �MF�
+,
−�� , �8�

and

MF�
+,
−� = Fh�
+,
−� + U�
+,
−� − �+� dr
+�r�

− �−� dr
−�r� �9�

is the grand potential in the system where the local concen-
trations of the two ionic species are constrained to have the
forms 
+�r� ,
−�r�. In Eq. �9� Fh=−TS is the Helmholtz free
energy of the hard-core reference system. In the local density
approximation Fh�
+ ,
−�=�drfh(
+�r� ,
−�r�), and fh con-
sists of the ideal-gas contribution plus the excess free-energy
density of hard-spheres with different diameters fh

ex,
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�fh„
+�r�,
−�r�… = 	
�


��r��ln„��
3
��r�… − 1�

+ �fh
ex
„
+�r�,
−�r�… . �10�

The �� is the thermal de Broglie wavelength of species �,
�= + ,−. Here for fh

ex we assume the Percus-Yevick com-
pressibility route to the Helmholtz free energy of a hard-
sphere mixture with size asymmetry �49�. The above theory
is equivalent to an approximate version �50� of the exact
collective-variables �CV� theory �51,52�.

Following Refs. �19–22� we introduce the parameters de-
scribing the charge and size asymmetry

� =
Z − 1

Z + 1
, �11�

and

� =
� − 1

� + 1
. �12�

The above parameters vary between −1 and 1, and therefore
are more convenient than the parameters Z and � that vary
between 1 and �. For ���0 ����0� the charge at the larger
ion is larger �smaller�.

As a length unit we choose the sum of radii of the cation
and the anion, �+−. The dimensionless densities and inverse
temperature are chosen as


+
* = 
+�+−

3 , 
−
* = 
−�+−

3 , �* = �
e+�e−�
D�+−

. �13�

T*=1/�* is the ratio between kT, the average kinetic energy
of an ion �up to a numerical factor� and the electrostatic
energy of the anion-cation pair at contact. Thus, T* is a pa-
rameter characterizing the competition between the thermal
motion that leads to disordering, and the electrostatic attrac-
tion that leads to crystallization. As thermodynamic variables
we choose T*=1/�* and the volume fraction of all ions,

� =
�

6
�
+�+

3 + 
−�−
3� . �14�

The volume fraction of all ions is related to the quantity
proportional to the number density of all ionic species,

s =
�

6
�
+

* + 
−
*� =

�

6
�+−

3 �N̄+ + N̄−�/V , �15�

where V is the volume and N̄± denote the average numbers of
positive and negative charges for given chemical potentials.
The relation between � and s is given by

� = s�1 + 3��� − �� − �3�� . �16�

Let us focus on homogeneous instantaneous states corre-
sponding to the extremum of MF. The constant densities in
the uniform states, corresponding to �MF /�
�

* =0, will be
denoted by 
0�

* . At sufficiently high T*, homogeneous instan-
taneous states correspond to the global maximum of the
Boltzmann factor �7�, i.e., to the global minimum of MF. At
low temperatures the above extremum of MF may corre-
spond to either a local minimum, a saddle point, or to a

maximum. For small deviations of 
+
*�r� and 
−

*�r� from the
constant values 
0+

* and 
0−
* , respectively, the functional �9�

can be expanded. The expansion can be truncated for 
�
*

−
0�
* →0. We write MF in the form

MF = 0 + 2 + int, �17�

where 0=MF�
0+
* ,
0−

* � is the value of the functional at the
extremum, and 2 denotes the Gaussian part of the func-
tional. In Fourier representation we have

�2��
̃+�k�,�
̃−�k�� =
1

2
� dk

�2��3�
̃��− k�C̃��
0 �k��
̃��k� ,

�18�

where �
̃��k� is the Fourier transform of �
�
*�r�=
�

*�r�
−
0�

* . In Eq. �18� and hereafter the wave numbers are in �+−
−1

units. The second functional derivative of MF�
+
* ,
−

*� at

�

* =
0�
* consists of two terms,

C̃��
0 �k� =

�2MF

�
̃��k��
̃��− k�
= a�� + �Ṽ���k� . �19�

The first term is given by �see Eqs. �9� and �10��

a�� =
��fh

�
�
*�
�

* , �20�

where the derivative is taken at 
�
* =
0�

* . Explicit expressions
for a�� are given in Appendix A. We have used the chemical
potentials for the asymmetric hard-sphere mixture obtained
in the Percus-Yevick approximation in Ref. �49�. From Eqs.

�9� and �5� it follows that the second term in C̃��
0 �k� is the

Fourier transform of the potential �3� and we find

�Ṽ++�k� = �*Z
4� cos�kr+�

k2 , �21�

�Ṽ−−�k� = �*Z−14� cos�kr−�
k2 , �22�

�Ṽ+−�k� = − �*4� cos k

k2 , �23�

where

r± =
�±

�+−
= 1 ± � . �24�

The higher-order part of the functional �17� can be written
in the form

�int =� dr
a���

3!
�
��r��
��r��
��r�

+
a����

4!
�
��r��
��r��
��r��
��r�� + ¯ ,

�25�

where
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a��� =
�a��

�
�
* and a���� =

�a���

�
�
* , �26�

and the derivatives are taken at 
�
* =
0�

* .
The RPM limit of the above general model corresponds to

�=�=0 �Z=�=1� and was studied before in Refs. �3,53�.
The opposite, colloid limit of �→1, �→1 �� ,Z→�� with
�=O�Z−1�, i.e., at infinite dilution of colloid particles, is de-
scribed in Ref. �8�.

B. Correlation and vertex functions and their generating
functionals

In the coarse-grained description the densities 
�
*�r� play

the role of the microstates. Thus, the standard definitions of
thermodynamic potentials and correlation functions can be
applied. In particular, the grand-thermodynamic potential in
a presence of external fields J+�r� and J−�r� is given by

�J+�r�,J−�r�� = − kT log ��J+�r�,J−�r�� , �27�

where

��J+�r�,J−�r�� =� D
+� D
− exp
− ��MF�
+,
−�

−� drJ��r�
��r�� . �28�

The external fields may play an important role in some ex-
perimental cases. For systems where no external fields are
present, as in our case, they are introduced as auxiliary fields
for computational reasons. The Legendre transform

F�
̄+�r�, 
̄−�r�� = �J+�r�,J−�r�� + �
r

J��r�
̄��r� , �29�

is the density functional, and 
̄�=−��J+�r� ,J−�r�� /�J�. The
−�J+�r� ,J−�r�� and F�
̄+�r� , 
̄−�r�� are the generating func-
tionals for the correlation and the vertex functions, respec-
tively, �54,55�. The two-point vertex function C��

=�2�F /�
̄��
̄� is related to the analog of the direct correla-
tion function c��. In Fourier representation this relation has
the form �54�

C̃���k� =
���

Kr

�
��
− c̃���k� , �30�

where ���
Kr is the Kronecker symbol, and �
�� is the average

density of the species �. In terms of the vertex functions the
FT analogs of the OZ equations take the simple form

C̃���k�G̃���k� = ���
Kr , �31�

where the Fourier transform G̃���k� of the two-point corre-
lation function,

G���r� = ��
��0��
��r�� = −
kT�2

�J��0��J��r�
, �32�

is related to the analog of the total correlation function h��

by �54�

G̃���k� = ���
Kr �
�� + h̃���k��
���
�� . �33�

The FT approach with the local-density approximation �10�
is designed for a description of the long range ordering that
determines phase transitions. Due to the coarse graining �or
“smearing” of the hard-spheres structure� the correlation
functions for distances ��++�− are not correctly repro-
duced.

C. Mean-field approximation

In practice the exact forms of  and F �Eqs. �27� and
�29�, respectively� cannot be obtained. In order to adopt stan-
dard approximations to the PM, let us focus on the most
probable instantaneous distributions of ions 
0�

* �r�, corre-
sponding to the global maximum of the Boltzmann factor �in
the presence of the external fields the latter is proportional to
the integrand in Eq. �28��. At low T* the most probable dis-
tributions may not be uniform; in particular, crystalline
phases are characterized by distributions of ions that are pe-
riodic in space. We rewrite Eqs. �27� and �29� in the equiva-
lent form

�J+,J−� = MF�
0+
* �r�,
0−

* �r�� − �
r

J��r�
0�
* �r�

− kT log ���J+,J−� , �34�

and

F�
̄+, 
̄−� = MF�
0+
* �r�,
0−

* �r�� + �
r

J��r��
̄��r� − 
0�
* �r��

− kT log ���J+,J−� , �35�

where

���J+,J−� =� D�
+� D�
− exp
− ���MF��
+,�
−�

−� drJ��r��
��r�� , �36�

and

�MF��
+,�
−� = MF�
0+
* + �
+,
0−

* + �
−�

− MF�
0+
* ,
0−

* � . �37�

The last term in Eq. �34� is the contribution to the grand
potential associated with fluctuations

�
��r� = 
�
*�r� − 
0�

* �r� �38�

around the most probable distributions, 
0+
* �r� and 
0−

* �r�
�only in the uniform phase 
0�

* �r�=
0�
* =const�. In the MF

approximation this term is just neglected, and the grand ther-
modynamic potential is approximated by the minimum of
MF�
+

* ,
−
*�−�rJ��r�
�

*�r� with respect to 
�
* for fixed exter-

nal fields J��r�. The average values of the local densities
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�
��r�� = 
0�
* �r� + ���J+,J−�−1� D�
+� D�
−�
��r�

� exp
− ���MF��
+,�
−� − �
r

J��r��
��r���
�39�

in MF are identified with their most probable values 
0�
* �r�,

i.e., the fluctuation contribution �the second term in Eq. �39��
is neglected. Beyond MF �
��r�� and 
0�

* �r� may differ from
each other, because �MF��
+ ,�
−� is not symmetric with
respect to �
�→−�
�. For example, in the case of the RPM
�37,56� the second term in Eq. �39� is comparable to 
0�

* �r�.
In the context of the PM the role of the fluctuation contribu-
tion in Eqs. �34� and �39� will be studied in future work, by
following the Brazovskii approach �57�.

In the above version of the MF, the generating functional
for the vertex functions F�
+ ,
−� �Eq. �29��, reduces to
MF�
+ ,
−�+�drJ��r�(
��r�−
0�

* �r�), with MF given in
Eq. �9�. Thus, for J�=0 the two-point vertex functions re-
duce to C��

0 �Eq. �19��. In this approximation the two-point
correlation functions G��

0 are related to C��
0 given in Eq. �19�

by the OZ equations analogous to Eq. �31�.

D. Phase transitions, spinodals, and pretransitional effects

Let us focus on the FT predictions for the phase diagram
in the case of J�=0. The stable �metastable� phases corre-
spond to the global �local� minimum of F�
̄+ , 
̄−� �Eqs. �29�
and �35��. Two minima corresponding to different forms of

̄��r� are of equal depth at the coexistence between the cor-
responding phases. Let us assume that the global minimum
of F�
̄+ , 
̄−� corresponds to 
0�

* �r�, which deviates signifi-
cantly from the constant function 
0�

* , corresponding to an-
other extremum of F�
̄+ , 
̄−�. For example, crystalline phases
are characterized by periodic density distributions with a
rather large amplitude. The minimum of F corresponding to
such nonuniform distributions can be found only when int
is included in Eqs. �17� and �35�. The int is given in terms
of the MF approximation for the three- and higher-order ver-
tex functions �see Eq. �25��. The gas-crystal phase transition
in the case of extreme size and charge asymmetry was stud-
ied in Ref. �8�; the phase transitions in the case of arbitrary
asymmetry will be studied in future work.

Let us consider the boundary of the global �local� stability
of the uniform phase. For given � the boundary of stability of
the uniform phase is given by the highest T*, for which there

exists k such that det C̃���k�=0 ��F /�
̄��
̄� is not positive
definite�. In this work we limit ourselves only to the MF

approximation, where C̃���k� is approximated by C̃��
0 �k�

�Eq. �19��. However, as first discovered by Brazovskii �57�,
when det C̃��

0 �k�=0 for k=kb�0, the fluctuation contribution
to F in Eq. �35� is comparable to MF. As a result, the
continuous transition �or the spinodal� line found in MF is
shifted to T*=0, i.e., it is actually removed, at least within
the one-loop self-consistent Hartree approximation �57�. The
same result was subsequently found in the context of block
copolymers, microemulsions, and the RPM �42,58–60�. In

general, if a continuous transition �or a spinodal� to a phase
with periodic OP is found in MF, a fluctuation-induced first-
order transition is expected at lower temperatures �42,57�
when the fluctuation contribution is included.

A detailed study of the effects of fluctuations on the order-
disorder transition is given in Ref. �37� in the context of the
RPM. In short, close to the MF spinodal the amplitude of the
most probable concentration wave 
0�

* �r� is infinitesimal, and
the fluctuations �38� form “noise” comparable to the “signal”

0�

* �r�. Averaging over all fluctuations restores the disordered
structure on large length �and time� scales. On the other
hand, the amplitude of the most probable concentration wave

0�

* �r� increases when the temperature is decreased. At low
temperatures the “signal” 
0�

* �r� is much stronger than the
“noise,” because only small-amplitude fluctuations �38� are
relevant. Averaging over all fluctuations modifies, but does
not destroy the “signal” at low enough temperatures. The
sum of MF and the fluctuation contribution in Eq. �34� as-
sumes the same value in the ordered and disordered phases at
the fluctuation-induced first-order phase transition. The or-
dering of the average distributions of ions occurs at tempera-
tures lower than at the MF spinodal line, therefore the latter
is associated with pretransitional effects.

The above discussion indicates that the analysis of the
stability of MF�
+ ,
−� does not give information on the
actual instability of the disordered phase, which is shifted to
T*=0 by destructive fluctuations. However, as we argue be-
low, it gives information on the pretransitional effects asso-
ciated with weak long-range ordering of the instantaneous
states in the disordered phase. Let us compare the probability
that a periodic instantaneous state �
��r�=
�

*�r�−
0�
* �0

occurs, with the probability of finding the homogeneous in-
stantaneous state �
+=�
−=0 �here 
0�

* =const�. According
to Eqs. �7� and �17�, the probability ratio is

p��
+,�
−�
p�0,0�

= e−��2+int�. �40�

Let the smaller eigenvalue of C̃��
0 �k� in Eq. �18� be denoted

by C̃��
0 �k�. The eigenmode �̃�k� corresponding to k=k0 can

be written as a linear combination of the functions

g̃i�k�k0� =
�2��d

�2
„w��k − k0i� + w*��k + k0i�… �41�

with different directions of the vectors k0i, where �k0i�=k0
and ww*=1. Let us focus on the instantaneous structure that
has the form �̃�k�=�ig̃i�k �k0�, and the amplitude of the

other eigenmode of C̃��
0 �k0�, �̃�k�, vanishes. From Eq. �18�

we have �2=V	i�i
2C̃���k0� /2, where V is the volume of

the system. Then Eq. �40� takes the form

p̄��ig̃i�k�k0�,0�
p�0,0�

= exp
−

	
i

�i
2V

2
„C̃���k0� + O�� j�…� .

�42�

In the above p̄ is the probability �40� as a function of the new
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variables �̃�k� and �̃�k�.
The sign of the term O�� j� depends on the form of int in

Eq. �17�, and on the form of �̃�k�. Here we limit ourselves to
infinitesimal amplitudes �i. When the term O��i� in Eq. �42�
is negligible, the probability ratio is larger or smaller from

unity for C̃���k0��0 or for C̃���k0��0, respectively. For

given �, the solution of C̃���k0�=0 yields the temperature

T*�� ;k0�, and C̃���k0��0 is equivalent to T*�T*�� ;k0� �see
Eq. �19� and below�. The most probable eigenmode corre-

sponds to kb such that C̃��
0 �k� assumes a minimum at k=kb.

Hence, the instantaneous uniform state occurs with a higher
probability than the periodic instantaneous state with infini-

tesimal amplitude and any wavelength for C̃���kb��0, i.e.,
for T*�T*�� ;kb�. When for given � temperature decreases
from T*=T*�� ;kb�, the range of k such that
p̄��ig̃i�k �k� ,0� / p�0,0��1 increases. This means that the
population of the instantaneous periodic states that occur
more frequently than the instantaneous uniform state in-
creases. Periodic distribution of ions in the significant frac-
tion of the instantaneous states can be recognized as a pre-
transitional effect associated with the transition to the
corresponding ordered phase. The line in the phase diagram

corresponding to C̃��
0 �kb�=0 can be identified with the struc-

tural line, because different instantaneous states dominate on
different sides of this line. Note that the structural line coin-
cides precisely with the boundary of stability of the uniform
phase in the MF approximation �MF spinodal�. In the case of
the RPM the structural line was called “the � line” �53� by
analogy with the line of the Néel points in antiferromagnets.
However, the name “structural line” is more appropriate for a
description of periodic ordering of instantaneous states in
fluids.

Near the minimum of C̃��
0 �k� the probability ratio in Eq.

�42� varies slowly with k. Further studies are required to
determine the probability that different wave packages cor-
responding to k�kb are thermally excited, and to verify if
the wave packages are related to clusters of ions in real
space.

We should note that the large-amplitude periodic states
may be more probable than the uniform state even for

C̃��
0 �kb��0, if the term O�� j� in Eq. �42� is negative. Note

also that in the above studies we assumed that the instanta-
neous states did not include the eigenmode � associated with

the larger eigenvalue of C̃��
0 �k�. Interesting information on

pretransitional effects can be gained from studies of the ef-
fect of coupling between the two eigenmodes in int. In par-
ticular, the probabilities of the eigenmodes � and �, given by
�D�p̄�� ,�� and �D�p̄�� ,��, respectively, are of consider-
able interest. In the case of the RPM �61� the charge-charge
correlations play a role analogous to short-range interactions
between the ions �1,61,62�, and at low volume fractions
�D�p̄�� ,�� turns out to be important for the phase separa-
tion �42,61�. The above questions go beyond the scope of
this work.

III. EIGENMODES AND MF BOUNDARY OF STABILITY
OF THE DISORDERED PHASE IN THE GENERAL

CASE OF ARBITRARY � AND Z

A. Eigenmodes

Our purpose here is to find the instantaneous states that
may lead to instabilities of the disordered phase for arbitrary
� and Z �or equivalently � and �, Eqs. �11� and �12�, respec-
tively� in the MF. In order to find the spinodal lines in the
MF �structural lines�, it is sufficient to analyze �2 �see Eqs.

�18� and �40��. C̃��
0 �k� �Eq. �19�� can be diagonalized, and 2

can be written in the form

�2 =
1

2
� dk

�2��2 ��̃�k�C̃��
0 �k��̃�− k� + �̃�k�C̃��

0 �k��̃�− k�� .

�43�

Both C̃��
0 �k� and C̃��

0 �k� depend on the wave number k in a
nontrivial way,

C̃��
0 �k� =

C̃++
0 �k� + C̃−−

0 �k� − sgn„C̃+−
0 �k�…B�k�

2
, �44�

and

C̃��
0 �k� =

C̃++
0 �k� + C̃−−

0 �k� + sgn„C̃+−
0 �k�…B�k�

2
, �45�

where

B�k� = �A2 + 4C̃+−
0 �k�2, �46�

and

A�k� = sgn„C̃+−
0 �k�…�C̃−−

0 �k� − C̃++
0 �k�� . �47�

In the above C̃��
0 are given in Eq. �19�, a�� are given in

Appendix A, and Ṽ���k� are given in Eqs. �21�–�23�.
In the general case the corresponding eigenmodes have

the forms

�̃�k� = ã�k��
̃+
*�k� − b̃�k��
̃−

*�k� , �48�

�̃�k� = b̃�k��
̃+
*�k� + ã�k��
̃−

*�k� , �49�

with

ã�k� = 
A�k� + B�k�
2B�k� �1/2

, �50�

b̃�k� = 
− A�k� + B�k�
2B�k� �1/2

. �51�

The eigenmodes represent two order-parameter �OP� fields,
and in principle either one of them may lead to instability of
the disordered phase.
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On the MF level the FT analogs �31� of the OZ equations
are decoupled in the eigenbasis of the vertex functions, i.e.,

G̃��
0 �k� = 1/C̃��

0 �k� and G̃��
0 �k� = 1/C̃��

0 �k� . �52�

Note that in the fully symmetrical case ��=�=0�, C̃−−
0 �k�

= C̃++
0 �k�, and ã�k�= b̃�k�=1/�2, hence � and � are propor-

tional to the charge and the number density, respectively.

Moreover, Eqs. �44� and �45� reduce to C̃��
0 �k�= (C̃++

0 �k�
+ C̃−−

0 �k�−2C̃+−
0 �k�) /2 and C̃��

0 �k�= (C̃++
0 �k�+ C̃−−

0 �k�
+2C̃+−

0 �k�) /2, representing the charge-charge and the
density-density vertex function, respectively. When any

asymmetry is present and C̃−−
0 �k�� C̃++

0 �k�, C��
0 and C��

0 that
satisfy the decoupled OZ equations differ from the charge-
and number-density vertex functions, respectively, in agree-
ment with Ref. �1�.

B. Dominant order parameters

Let us focus on thermodynamic conditions such that the
uniform distributions 
0�

* correspond to the minimum of
MF, and consider the two OP fields with equal wavelengths
and equal infinitesimal amplitudes. The field leading to a
smaller increase of MF is thermally excited with a higher
probability �7�, and such OP dominates over the other one.
Which one of the two infinitesimal fields �̃�k� or �̃�k� domi-

nates, depends on which function, C̃���k� or C̃���k�, is

smaller �see Eq. �43��. This, in turn, depends on sgn(C̃+−�k�)
�see Eqs. �44� and �45��. From Eqs. �19� and �23� we obtain
the line

T* =
4� cos k

k2 a+−
−1 , �53�

separating the phase space �� ,T*� into the high-temperature

part where the OP �̃�k� dominates, and the low-temperature
part where the other eigenmode dominates. In the above, a+−
is a function of � �or s� given in Appendix A. Note that for
different wave numbers k Eq. �53� yields quite different
lines. In particular, for long wavelengths k→0, correspond-
ing to phase separation into two uniform phases, from Eq.
�53� we find that �̃�0� dominates for all temperatures T*

��. We can thus conclude that if the phase separation
�stable or metastable� occurs, it is induced by the field �. On
the other hand, for k�� /2, corresponding to the periodic
ordering of ions with the wavelength 2� /k�4 �in �+− units�,
the OP �̃�k� dominates for all temperatures T*�0. In prin-
ciple, the uniform system may become unstable with respect
to the eigenmodes with 0�k�� /2 as well. As we show
later, this is indeed the case for very large asymmetry. In
such a system �̃�k� or �̃�k� dominates for temperatures
higher or lower than the temperature given in Eq. �53�, re-
spectively.

C. MF spinodal lines

Let us first analyze the stability of the uniform phase with
respect to long-wavelength deviations from homogeneous

distributions of ions in the MF approximation. For k→0 Eqs.
�45� and �44� assume the asymptotic forms

C̃��
0 �k� =

a++Z−1 + a−−Z + 2a+− − 4��*�2

Z + Z−1 + O�k2� , �54�

and

C̃��
0 �k� =

4��*�Z + Z−1�
k2 + O�1� . �55�

C̃��
0 �k� diverges for k→0. When C̃��

0 �0�=�, then the prob-
ability p� exp�−�MF�� ,��� of thermally exciting any non-

zero �̃�0� vanishes �see Eqs. �17� and �43��, as required by

the global charge neutrality. C̃��
0 �k� can vanish for k=0 when

T* =
4��2

a++Z−1 + a−−Z + 2a+−
. �56�

The above equation describes the MF spinodal line associ-
ated with the phase separation into two uniform phases char-
acterized by different values of the OP �.

The MF instability with respect to the k mode is given by

det C̃��
0 �k� = C̃��

0 �k�C̃��
0 �k� = 0, �57�

where

C̃��
0 �k�C̃��

0 �k� = „a++ + �Ṽ++�k�…„a−− + �Ṽ−−�k�…

− „a+− + �Ṽ+−�k�…2

= −
sin2�k��

k4 �4��*�2

+
b�k,s,�,��

k2 4��* + d�s,�,�� , �58�

and the functions b�k ,s ,� ,�� and d�s ,� ,���0 are given in
Appendix B.

Note that there is a single positive solution of Eq. �57� for
�* for all values of the remaining parameters. The wave
vector at the MF spinodal �structural line� is determined from

�„C̃��
0 �k�C̃��

0 �k�…/�k = 0. �59�

The solutions of Eqs. �57� and �59� give the spinodal line and
the wave number of the dominant instantaneous state.

D. Nature of the eigenmodes for different � and Z

It is instructive to discuss the nature of the eigenmodes
that may drive the system out of the homogeneous state

�

*�r�=
0�
* =const. Equations �48� and �49� can be easily in-

verted to give

�
̃+
*�k� = ã�k��̃�k� + b̃�k��̃�k� , �60�

�
̃−
*�k� = − b̃�k��̃�k� + ã�k��̃�k� . �61�

The local charge density
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q�r� = Z�
+
*�r� − �
−

*�r� �62�

�in �e−��+−
−3 units�, and the local deviation of the number den-

sity of ions from the most probable value �in �+−
−3 units�

�
�r� = �
+
*�r� + �
−

*�r� , �63�

are related to the two OP’s by

q̃�k� = „Zã�k� + b̃�k�…�̃�k� + „Zb̃�k� − ã�k�…�̃�k� ,

�
̃�k� = „ã�k� − b̃�k�…�̃�k� + „ã�k� + b̃�k�…�̃�k� . �64�

The inverse relations are

�̃�k� =
1

Z + 1
�„ã�k� + b̃�k�…q̃�k� + „ã�k� − Zb̃�k�…�
̃�k�� ,

�65�

�̃�k� =
1

Z + 1
�„b̃�k� − ã�k�…q̃�k� + „Zã�k� + b̃�k�…�
̃�k�� .

�66�

On the low-temperature side of the structural line the
dominant instantaneous states consist of the charge- and the
number-density waves with the wave number kb and the am-
plitudes that satisfy the relation

�
̃�kb� = Rq̃�kb� . �67�

As seen from Eqs. �64�–�66�, the instability of MF associ-
ated with �̃�kb� �i.e., with �̃�kb�=0�, corresponds to

R =
„ã�kb� − b̃�kb�…

„Zã�kb� + b̃�kb�…
. �68�

For ã�kb�= b̃�kb�, i.e., in the RPM limit, R=0, and �̃�kb�
� q̃�kb�. When the instability of MF is induced by �̃�kb� and
the other OP vanishes, then

R =
„ã�kb� + b̃�kb�…

„Zb̃�kb� − ã�kb�…
. �69�

For Zb̃�kb�= ã�kb� we have 1/R=0, and �̃�kb���
̃�kb�.
For R�1 the charge-density waves dominate over the

number-density waves in the dominant eigenmode. In such a
case the regions of the excess positive charge are followed
by regions of excess negative charge. The number densities
in the charged regions are comparable. For R�1 the
number-density waves dominate, i.e., regions with excess
number density are followed by regions containing a smaller
number of ions. Both the dense and the dilute regions are
nearly charge neutral for R�1.

In real-space representation the OP fields are given by
convolutions

��r� =� dr1��
+
*�r1�a�r − r1� − �
−

*�r1�b�r − r1�� ,

�70�

with an analogous expression for the field ��r�, where a�r�
and b�r� are inverse Fourier transforms of the functions de-
fined in Eqs. �50� and �51�.

IV. CASE OF EQUAL SIZES

A. MF spinodal and the wave vector of the most probable
instantaneous state

The phase separation �56� occurs only for different sizes
of the ionic species ���0�. In the size-symmetric case the
disordered phase is unstable only with respect to periodic
ordering in MF. Let us consider the periodic ordering, for
which the MF spinodal is given by Eqs. �57� and �59�. For
�=0 we obtain

a�� =
1


0�
* + a+−, �71�

and

a+− =
��4 − s��2 + s2�

�1 − s�4 . �72�

The boundary of stability of the disordered phase and the
associated wave vector reduce to the form

TR
*�s� = −

24 cos kR

kR
2 s, tan kR = −

2

kR
. �73�

The above form is identical to the one found for the RPM
within the same approach �3,53�. The subscript R indicates
that the MF spinodal and the wave number refer to the RPM.
The charge asymmetry has no effect on the boundary of sta-
bility of the disordered phase on the MF level of our theory,
as long as the sizes are the same. This result agrees with MF
predictions of other theories �17,63–65�. Beyond MF this
property does not persist �17,64,65� due to the coupling be-
tween the two OP’s in int.

B. Eigenmodes

In this case we obtain the following form of Eq. �47�:

A = − sgnC̃+−�k�
4�

1 − �2� �

6s
+

4��* cos k

k2 � . �74�

At the MF spinodal line �73�A=0, and in turn ã�kR�= b̃�kR�
�see Eqs. �50� and �51��, thus

�̃�kR� =
1
�2

„�
̃+�kR� − �
̃−�kR�… , �75�

�̃�kR� =
1
�2

„�
̃+�kR� + �
̃−�kR�… . �76�

These relations are the same as in the RPM, although for Z
�1�̃�k� differs from the charge-density amplitude �62�. Be-

FIELD THEORY FOR SIZE- AND CHARGE-ASYMMETRIC… PHYSICAL REVIEW E 75, 051505 �2007�

051505-9



yond the spinodal line A�0, and the eigenmodes contain
different proportions of �
̃+ and �
̃−.

V. THE MF SPINODAL ASSOCIATED WITH THE GAS-
LIQUID PHASE SEPARATION

A. Eigenmodes in the case of k\0

Let us discuss the nature of the eigenmodes for k→0.
From Eqs. �50� and �51� we find for arbitrary � and �,

ã�0� =
Z

�1 + Z2
, b̃�0� =

1
�1 + Z2

. �77�

In the long-wavelength limit the amplitudes of the eigen-
modes assume the forms

�̃�0� =
1

�1 + Z2
„�
̃+

*�0� + Z�
̃−
*�0�… , �78�

�̃�0� =
1

�1 + Z2
„Z�
̃+

*�0� − �
̃−
*�0�… . �79�

Note that from Eqs. �79� and �62� it follows that �̃�0�
� q̃�0�. The charge-neutrality condition �6� is equivalent to

�̃�0�=0. For �̃�0�=0 we obtain

�̃�0� =
�1 + Z2

1 + Z
�
̃�0� . �80�

In Sec. III B we have shown that for k→0 the dominant
eigenmode is �̃�0�. Equation �80� shows that �̃�0���
̃�0�.
Hence, we find the usual phase separation into ion-dilute and
ion-dense phases for all values of the asymmetry parameters,
as expected.

B. MF spinodal lines

In our MF approximation the spinodal line for the gas-
liquid separation assumes a single maximum Tc

*��c� at the
critical point �cp� for any pair of ��0 and �. The MF spin-
odal lines are shown in Figs. 1–3 for �=0.2, �=0.6, and �
=0.9, respectively, for several values of �. The spinodal lines
assume the characteristic asymmetric shape as in the RPM
�1,2�.

The critical temperature and the volume fraction, Tc
* and

�c, respectively, are shown in Fig. 4 as functions of the size
asymmetry for several charge ratios. For a given charge ratio
the dependence of �c on the size asymmetry agrees qualita-
tively with the major trends found in Monte Carlo �MC�
simulations �18–20,22,45�. Namely, �c is a convex function
of �, and its value is of the same order of magnitude as in
Ref. �22�. In contrast, Tc

* is a convex function of � for fixed
�, whereas in MC a concave function was obtained
�18–20,22�. For large asymmetries the value of Tc

* is overes-
timated, whereas for �=0 we have Tc

*=0 in our MF approxi-
mation. On the other hand, the dependence of Tc

* on � for
fixed � agrees qualitatively with MC results �22�. Namely,
for ��0 the Tc

* decreases with increasing charge asymmetry,
and for ��0 the lines Tc

*��� corresponding to different

charge ratios intersect each other �Fig. 4 �upper panel� here
and Fig. 9 in Ref. �22��. In the case of �c, a correct depen-
dence on the charge asymmetry is found for ��0, whereas
for ��0 our results do not agree with �partial� results ob-
tained in Ref. �22��.

In the case of �=1 and �→1 ��=� ,Z→��, and for �
=O�Z0�, Eq. �56� assumes the simple form

T* = 3��1 − ��2. �81�

The critical-point temperature Tc
*=4/9, and density �c=1/3,

are both large compared to the corresponding values in the
RPM, in contrast to the simulation results. Thus, some of the
trends found in simulations are correctly predicted by the MF
theory, while some other trends are not. Note, however that
beyond MF coupling between the two OP’s may have a sig-
nificant effect on the spinodal. In particular, beyond MF Tc

*

�0 is found for �=0 �3,53� as a result of the coupling be-
tween the two OP’s in int �see Eq. �25��. A significant effect
of the coupling between the two OP’s on the spinodal should
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FIG. 1. MF spinodal lines for the gas-liquid separation for �
=0.2 ��=3/2�. The solid and the dashed lines correspond to ��0
and ��0, respectively. From the top to the bottom, the solid lines
correspond to �=0.5, �=0, and �=0.9. The upper and the lower
dashed line correspond to �=−0.5 and �=−0.9, respectively.
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FIG. 2. MF spinodal lines for the gas-liquid separation for �
=0.6 ��=4�. The solid and the dashed lines correspond to ��0 and
��0, respectively. From the top to the bottom, the solid lines cor-
respond to �=0.9, �=0.5, and �=0. The upper and the lower dashed
line correspond to �=−0.5 and �=−0.8, respectively.
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be expected also for ��0 and ��0. Indeed, a qualitatively
correct dependence of the location of the cp on � is found for
�=0 in the CV approach �17�, beyond MF. As mentioned in
Sec. II A, the CV approach and our mesoscopic theory are
closely related �50�. Correct trends are also found when ion
pairing is explicitly taken into account �15,16�.

VI. MF SPINODAL ASSOCIATED WITH PERIODIC
ORDERING OF IONS

The structural line �MF spinodal� associated with the pe-
riodic ordering of the instantaneous states, as well as the
most probable periodic structures depend qualitatively on �
and Z �or on � and ��. The key role is played by the size
asymmetry. Three regimes of the size asymmetry can be dis-
tinguished, although there are no sharp boundaries, but rather
smooth crossovers between them. The approximate ranges of
the first two regimes are ��0.4 ���2.3�, and 0.46��
�0.9 �2.7���19�. The nontrivial behavior in the crossover
region 0.4���0.46 will be described in a separate work.
The qualitative dependence on � is found in the second re-
gime only. The third regime corresponds to the asymptotic
case of � ,�→1, i.e., to extreme charge and size asymmetry.
In the other �unphysical� extreme, ��→−1, the periodic or-
dering is suppressed. A detailed description of each case is
given in the following subsections.

A. Small size asymmetry

1. MF spinodal lines and wave vectors in the dominant
instantaneous states

The structural line �MF spinodal� in the case of the small
size asymmetry ��0.4 ���2.3� is qualitatively the same as
in the RPM �where it is called the � line�, i.e., along the
spinodal T* is a monotonically increasing function of � �Fig.
5�. Somewhat surprising is the fact that for larger charge
asymmetry the ordering occurs at higher temperatures. It is
not clear whether this tendency persists beyond MF. The
wave number characterizing the period of the oscillations of
the OP field in the ordered phase is kb�� /2, and its value is
almost independent of � �see Fig. 6�. The size of the regions
of increased or depleted densities of the two ionic species,
�� /kb� ��++�−�, is comparable to the size of the ions, and
the ordered phase should be identified with a standard “hard”
ionic crystal. According to the discussion in Sec. III B, the
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FIG. 3. MF spinodal lines for the gas-liquid separation for �
=0.9 ��=19�. The solid and the dashed lines correspond to ��0
and ��0, respectively. From the top to the bottom, the solid lines
correspond to �=0.9, �=0.5, and �=0.0. The dashed line corre-
sponds to �=−0.3.
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FIG. 4. Critical temperature �top� and critical volume fraction
�bottom� as functions of the size asymmetry �, for three values of
the charge asymmetry �. Solid, dashed, and dash-dotted lines cor-
respond to �=0.9,0.5, and 0, respectively.
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FIG. 5. MF spinodal lines for the transition to the ordered phase
for �=0.2. From the top to the bottom lines �=0.9, �=0.7, �=0.5,
�=0.0, �=−0.5, �=−0.7, and �=−0.9. Temperature T* and the vol-
ume fraction of ions � are in dimensionless reduced units defined in
Eqs. �13� and �14�, respectively.
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relevant OP field is �̃�kb� for the whole temperature range.
The amplitudes of the number- and the charge-density waves
in the dominant instantaneous state are related according to
Eqs. �67� and �68�. The amplitude ratios R for �=0.2 are
shown in Fig. 7.

The above results indicate that the behavior of the PM for
��0.4 is qualitatively the same as in the RPM. By analogy
with the RPM, we expect that the transition to the ionic
crystal is fluctuation-induced first- order, and occurs at sig-
nificantly lower T* and higher � compared to the structural
line �37�.

2. Eigenmodes for very small asymmetries

Let us determine the behavior of the eigenmodes in the
RPM limit. For � ,�→0 we find from Eq. �47� that A→0,
and

ã�k���,�→0
1
�2

�1 + y� + O��2,��,�2� ,

b̃�k���,�→0
1
�2

�1 − y� + O��2,��,�2� , �82�

where

y =
A
2B

= O��� + O��� . �83�

The eigenmodes �48� and �49� take the forms

�̃�k� =
1
�2

��
̃+�k� − �
̃−�k� + y„�
̃+�k� + �
̃−�k�…�

+ O��2,��,�2�

=
1
�2

��1 − ��q̃�k� + �y − ���
̃�k�� + O��2,��,�2� ,

�84�

and

�̃�k� =
1
�2

��
̃+�k� + �
̃−�k� − y„�
̃+�k� − �
̃−�k�…�

+ O��2,��,�2�

=
1
�2

��
̃�k� − yq̃�k�� + O��2,��,�2� . �85�

For infinitesimal asymmetry parameters, �
 and q yield an
infinitesimal contribution to � and to �, respectively. The OZ
equations are thus decoupled for the eigenmodes � and �
that very weakly deviate from the charge and the number
densities, respectively. This result agrees with the predictions
of Ref. �1�.
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FIG. 8. MF spinodal lines of the transition to the ordered phase
for �=0.6 and ��0. From the top to the bottom lines �=0.9, �
=0.7, �=0.5, and �=0.0. Temperature T* and the volume fraction of
ions � are in dimensionless reduced units defined in Eqs. �13� and
�14�, respectively.
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FIG. 6. The wave number kb corresponding to the ordering of
ions along the MF spinodal lines shown in Fig. 5 for �=0.2. From
the bottom to the top lines �=0.9, �=0.7, �=0.5, �=0.0, �=−0.5,
�=−0.7, and �=−0.9. kb is in �+−

−1 units and � is the volume fraction
of ions.
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FIG. 7. The ratio R in the relation �67� between the amplitudes
of the number- and charge-density waves in the dominant eigen-
mode, along the MF spinodal lines shown in Fig. 5 for �=0.2. From
the top to the bottom lines �on the right� �=0.9, �=0.5, �=0.0, �
=−0.5, and �=−0.9. Both R and the volume fraction of ions � are
dimensionless. Note that �R��1, indicating periodic ordering into
positively and negatively charged regions of the spatial extent � /kb

�in �+− units�, where kb is shown in Fig. 6.
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B. Moderate and large size asymmetry

For ��0.46 ���2.7� the structural line associated with
the periodic ordering of the instantaneous states assumes a
single maximum for ��0.15. Unlike the case of ��0.4, at
higher volume fractions the periodic ordering is less favor-
able. For the nonmonotonic structural lines two cases can be
distinguished, according to a different behavior of the wave
number of the dominant instantaneous states kb.

1. kb�� /2

Such large wave numbers are found for the moderate size
asymmetry, 0.46���0.67, in the case of ���0 �larger
charge at the larger ion�. For �=0.6 and ��0 the structural
lines and the corresponding wave numbers kb are shown in

Figs. 8 and 9, respectively. Except for very small �, the wave
number is kb�� /2, and increases with increasing �. Increas-
ing kb indicates a decreasing period of oscillations of 
��x�,
in agreement with expected smaller nearest-neighbor dis-
tances for larger density. For kb�� /2 the dominant field is
� �Sec. III B�. The behavior of R, shown in Fig. 10, is simi-
lar to that in the case ��0.4.

The analysis of the cluster formation in Ref. �47� was
performed for this range of parameters. Namely, the case of
�=0.639, and �=0.85 �monovalent�, �=0.7 �divalent�, and
�=0.6 �trivalent counterions� was examined in detail. The
volume fractions and temperatures were �� ,T*�
= �0.0185,0.157�, �0.0174,0.079�, and �0.017,0.0525� for
monovalent, divalent, and trivalent counterions, respectively.
All cases correspond to the low-T* side of the structural line,
where the periodic instantaneous structures dominate. Only
for trivalent counterions kb�� /2 and the relevant OP is �,
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FIG. 9. The wave number kb corresponding to the ordering of
ions along the MF spinodal lines shown in Fig. 8 �for �=0.6 and
��0�. From the bottom to the top lines �=0.9, �=0.7, �=0.5, and
�=0.0. kb is in �+−

−1 units and � is the volume fraction of ions. The
dashed and dash-dotted lines correspond to kb=� /2 and �, respec-
tively. Note that kb�� /2 for very small values of �.
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FIG. 10. The ratio R �67� between the amplitudes of the
number- and charge-density waves in the dominant eigenmode for
�=0.6 and ��0. The solid, dashed, and dash-dotted lines corre-
spond to �=0.9, �=0.5, and �=0.0, respectively. Note that �R � �1,
and periodic ordering into positively and negatively charged regions
of a size � /kb, with kb shown in Fig. 9, takes place. Both R and the
volume fraction of ions � are dimensionless.
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FIG. 11. The wave number kb corresponding to the ordering of
ions along the MF spinodal lines shown in Fig. 12 �for �=0.6 and
��0�. From the top to the bottom lines �=−0.5, �=−0.7, and �
=−0.8. kb is in �+−

−1 units and � is the volume fraction of ions. At the
dashed line kb=� /2.
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FIG. 12. Solid lines represent the MF spinodal lines of the tran-
sition to the ordered phase for �=0.6 and ��0. The dotted lines are
the MF spinodals corresponding to the gas-liquid phase separation
associated with kb=0, discussed in Sec. V. From the top to the
bottom lines �=−0.5, �=−0.7, and �=−0.8. Temperature T* and the
volume fraction of ions � are in dimensionless reduced units defined
in Eqs. �13� and �14�, respectively.

FIELD THEORY FOR SIZE- AND CHARGE-ASYMMETRIC… PHYSICAL REVIEW E 75, 051505 �2007�

051505-13



but this fact is not sufficient to explain the differences found
in the short-range ordering into clusters. Further studies be-
yond the stability analysis of MF are required to verify
whether the coarse-grained description can explain the clus-
ter formation.

2. kb�� /2

kb�� /2 is found in the case of 0.46���0.67 for �
�0 �larger charge at the smaller ion�, as shown in Fig. 11.

For ��0.67 ���5� the wave number of the dominant

eigenmode of C̃��
0 �kb� is kb�� /2 for all values of � �Fig.

13�. The extent of the phase-space region corresponding to
periodic ordering of the instantaneous states is similar to that
of the case of 0.46���0.67 �Figs. 14 and 15�.

When the difference between � and � is not too large, the
kb initially increases with increasing � �Figs. 11 �upper
curve� and 13 �two upper curves��. When kb increases, the

structural line and the MF spinodal of the gas-liquid separa-
tions are well separated. The amplitude ratio is R=O�1� and
varies slowly with �. At a value of � depending on � and �,
kb starts to decrease, and at some point a rapid decrease to
kb=0 occurs. At the corresponding value of �=�L �Lifshitz
point� the MF spinodals merge together and become identical
for ���L �Figs. 12, 14, and 15�. The amplitude ratio R �67�
increases rapidly, when a rapid decrease to kb=0 occurs �see
Figs. 16 and 17�. For a large difference between the charge
and the size asymmetry, the kb decreases for the whole range
of � �see the two lower curves in Fig. 11 and the three lower
curves in Fig. 13�.

For R�1 the amplitude of the charge-density is much
smaller than the amplitude of the number-density wave �Sec.
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FIG. 13. The wave number kb corresponding to the ordering of
ions along the MF spinodal lines for �=0.9. From the top to the
bottom lines �=0.9, �=0.7, �=0.5, �=0.0, and �=−0.3. kb is in �+−

−1

units and � is the volume fraction of ions. The horizontal dashed
line corresponds to kb=� /2.
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FIG. 14. MF spinodal lines �solid� for the transition to the or-
dered phase for �=0.9 and ��0. The dotted line represents the MF
spinodal line for the gas-liquid separation. From the top to the bot-
tom lines �=0.9, �=0.7, and �=0.5. Temperature T* and the vol-
ume fraction of ions � are in dimensionless reduced units defined in
Eqs. �13� and �14�, respectively.
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FIG. 15. MF spinodal lines �solid� for the transition to the or-
dered phase for �=0.9 and ��0. Dotted lines are the MF spinodal
lines for the gas-liquid separation. From the top to the bottom lines
�=0.0 and �=−0.3. Temperature T* and the volume fraction of ions
� are in dimensionless reduced units defined in Eqs. �13� and �14�,
respectively.
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FIG. 16. The ratio R �67� between the amplitudes of the
number- and charge-density waves in the dominant instantaneous
state for �=0.6 and ��0. The upper and the lower curve corre-
spond to �=−0.8 and �=−0.5. Note that R�1, and regions of in-
creased and depleted number density are formed. The size of these
regions is � /kb, with kb shown in Fig. 11. Both R and the volume
fraction of ions � are dimensionless. In the case of the upper curve
both the dense and the dilute regions in the dominant eigenmode are
nearly charge neutral for ��0.1.
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III D�. Thus, the ordering into alternating oppositely charged
regions is suppressed. For ��0 a large charge at the small
ion is compensated by a large number of large ions having
small charges; therefore the unit cell of the ordered structure
is large, and may contain voids. In crystals containing voids
as parts of the structure the size of the unit cell is signifi-
cantly larger than the sum of radii of the two ionic species.
Such voids should be distinguished from vacancies resulting
from thermal fluctuations, which are present in the ionic
crystals at low densities.

In this case the ordered structures are much more complex
than in both the RPM-like systems and the colloidlike sys-
tems. Whether such complex structures may correspond to

stable phases in the PM with moderate size and charge asym-
metry remains an open question, because the binodal associ-
ated with the periodic ordering may be preempted by the
binodal associated with the phase separation.

For a large difference between the charge and the size
asymmetry, the MF instability with respect to ordering of
ions in periodic structures occurs only for small values of �
and T* �Figs. 12 and 14–17�. For ��→−1 the ordering is
suppressed entirely. An infinite number of large ions is re-
quired to neutralize the infinite charge at the small ion for
�=−1. Clearly, the formation of an ordered structure with a
finite period is not possible in this �unphysical� case.

Finally, we should note that at large volume fractions the
effects of ordering of hard spheres become important, and
such effects are not accounted for by this theory.

C. Case of very large asymmetry, ��\1

The maximum of the MF spinodal T*��� increases when
���→1, and for ����0.9 the maximum increases very
rapidly. This increase of the phase-space region where the
most probable instantaneous states are periodically ordered
can be observed by comparing Figs. 13, 18, and 19. In the
latter plot the spinodal line and the wave vector are shown
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FIG. 17. The ratio R �67� between the amplitudes of the
number- and charge-density deviations from the average values in
the dominant instantaneous state for �=0.9. From the bottom to the
top lines �=0.9, 0.5, 0, and −0.3. At the dashed line R=1. Both R
and the volume fraction of ions � are dimensionless.
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FIG. 18. The MF spinodal lines �solid� and the corresponding
asymptotic behavior for �=�→1 �dashed�. The latter has the form
T*=12.3� / �1−�4� �Eq. �38� in Ref. �8� and Eq. �16� here�. From the
bottom to the top lines �=�=0.95, 0.98, 0.996, and 0.9995 ��=Z
=39, 99, 499, and 3999�, respectively. In the last case the solid and
the dashed lines are indistinguishable for the given range of T*.
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FIG. 19. The MF spinodal line �top� and the corresponding
wave vector of the dominant eigenmode �bottom� for �=0.998 and
�=0.9998. The dashed line is the asymptotic result of Ref. �8�. For
��1, kb�1.23 in agreement with the asymptotic result of Ref. �8�.
T* is in the dimensionless units �Eq. �13��, and kb is in units of
�+−

−1 �2/�+.
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for Z=104 ��=0.9998� and �=103 ��=0.998�, corresponding
to highly charged colloids with counterions of a microscopic
size, considered in many experimental studies.

The case of extreme asymmetry was studied in Ref. �8�
for s=O�Z0� ��=O�Z−1��, i.e., for infinite dilution of colloid
particles. In the limiting case the spinodal assumes the
asymptotic form �8�

TC
* ��� = −

3 cos�2kC�
kC

2 Z� , �86�

where

tan�2kC� = −
1

kC
. �87�

The subscript C indicates that the MF spinodal and the cor-
responding wave vector correspond to the colloid limit � ,�
→1, with the infinite dilution of the colloid particles for Z
→�.

Note that kC=kR /2�� /2, and according to the discussion
in Sec. III B the eigenmode � is relevant on the high-T* side,
whereas the eigenmode � is relevant on the low-T* side of
the line �53�. The asymptotic analysis in Ref. �8� indicates
that the phase behavior is determined only by the field �
+.
Here we shall verify if the dominant eigenmode indeed re-

duces to �
+. For Z→� and for C̃++�k��0 we obtain the
approximate form of Eq. �46�,

B = �C̃++�k�� − sgn„C̃++�k�…C̃−−�k� +
2C̃+−�k�2

�C̃++�k��
+ O�Z−2� .

�88�

In the limit �=�=1 the line �53� assumes the form T*

= 3 cos k
k2 . From Eqs. �50� and �88�, and the above we obtain

the asymptotic behavior of ã and b̃ in Eqs. �48� and �49� for
Z→�,

ã�k� = �1 − O� 1

Z2� if
3 cos k

k2 � T* � TC
* ��� or TC

* ��� � T* �
3 cos k

k2

O� 1

Z
� otherwise, � �89�

with b̃�k�=O� 1
Z

� and b̃�k�=1−O� 1
Z2 � in the first and in the second regime, respectively. The eigenmodes obtained from Eqs. �48�

and �49� assume the forms

�̃�k� � ��̃
+�k� if
3 cos k

k2 � T* � TC
* ��� or TC

* ��� � T* �
3 cos k

k2

�̃
−�k� otherwise,
� �90�

and

�̃�k� � ��̃
−�k� if
3 cos k

k2 � T* � TC
* ��� or TC

* ��� � T* �
3 cos k

k2

�̃
+�k� otherwise,
� �91�

where the neglected contributions are O�1/Z�. The dominant
eigenmodes for different parts of the �� ,T*� phase diagram,
obtained from Eqs. �90� and �91�, are shown in Fig. 20.
Below the MF spinodal line, i.e., for T*�TC

* ���, each domi-
nant OP reduces to �
̃+�kC�. The asymptotic analysis of Ref.
�8� is thus fully consistent with the present, more complete
approach.

VII. SUMMARY

We performed the MF stability analysis of the disordered
phase in the PM for the whole range of size and charge
asymmetry of the ionic species. As in other cases corre-
sponding to periodic ordering �37,57,58,60�, destructive fluc-

tuations suppress the true instability �at the true instability
the average distribution of ions undergoes a continuous or-
dering�. As we argue in Sec. II D, the instabilities of the
disordered phase found in MF in fact represent structural
lines. The structural lines are associated with ordering of the
most probable instantaneous states, i.e., with pretransitional
effects. Our results show that periodic ordering of the instan-
taneous states depends mainly on the size asymmetry �.
Qualitative dependence on the charge asymmetry � is found
only when the size asymmetry is sufficiently large.

The strongest tendency for periodic ordering is found for
� ,�→1; in this case the pretransitional effects are present for
a very large temperature range �Figs. 19 and 21 �top��. The
period of 
�

*�r�, 2� /kb�2�+, decreases with increasing �
�Fig. 19, �bottom��. A more detailed analysis in Ref. �8�
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shows that for small � the most probable structure has the
form of the bcc crystal formed by the large ions that are
immersed in the cloud of the counterions. When both asym-
metry parameters decrease, the temperature range for which
the periodic ordering occurs decreases very rapidly �Figs. 18,
14, 8, and 21�. For � ,�=0.9, T* at the maximum of the
structural line is 500 times lower than for �=0.998, �
=0.9998 �Figs. 14, 19, and 21�. Note that when the structural
line assumes a maximum, a sequence of fluid-crystal-fluid
transitions for increasing � is expected. Such reentrant melt-
ing was observed experimentally �34,36,40�. Physical sys-
tems corresponding to this range of asymmetry parameters
include highly charged colloids in the presence of one kind
of counterions and no coions. In the other extreme case of
��→−1 the periodic ordering is suppressed entirely. This
case is unphysical, and will not be discussed here.

For 0.9���0.46 the periodic ordering depends on the
size asymmetry rather weakly, as long as � is sufficiently
large �Figs. 8, 14, and 21�. However, when � decreases and
becomes negative �the charge at the smaller ion is not suffi-
ciently small�, T* and � corresponding to the ordering both
decrease to very small values �Figs. 12 and 15�. Nearly neu-
tral clusters followed by voids are formed in this case, and
the period of the structure, 2� /kb, is an increasing function
of � �Figs. 11 and 13�. Moreover, the corresponding struc-
tural line and the MF gas-liquid spinodal are close to each
other on the phase diagram �Figs. 12 and 15�. In future stud-
ies the binodal lines should be determined in MF and beyond
to verify whether the complex ordered structures with large
periods correspond to stable crystal phases, or whether they
reflect a tendency for the formation of aggregates in the fluid
phase. Physical systems corresponding to this range of asym-
metry may include globular proteins, organic ions, and some
room-temperature ionic liquids.

For the large and moderate size asymmetry discussed
above ���0.46� the structural line assumes a pronounced
maximum for ��0.1 �Figs. 8, 12, 14, 15, and 18�. It is re-
markable that the periodic ordering induced by the Coulomb
interactions is most efficient for small volume fractions,
whose range 0.1���0.3 is almost independent of � �Figs.
8, 12, 14, 15, and 18�.

When � further decreases, the maximum of the structural
line becomes less and less pronounced, and finally disap-

pears for ��0.4 ���2.3�. In fact the crossover behavior is
nontrivial, and will be given more consideration in future
studies. T* at the structural line becomes a monotonically
increasing function of �, and the periodic ordering is more
efficient at large volume fractions �Fig. 5�. The period of the
ordered structure is nearly independent of � �Sec. VI A�. The
same qualitative behavior is found in our MF approximation
for the RPM �53�. By analogy with the RPM �37� we expect
that beyond MF the ordered phase corresponds to a hard
ionic crystal. The crystallization line is expected at much
lower T* and much higher � compared to the structural line
�37�. Physical systems for this range of asymmetry include
molten salts and electrolytes. The close-packing effects ex-
pected at large volume fractions in all the above cases cannot
be predicted by the present version of the FT, because of the
local density approximation for the reference-system free en-
ergy.

Finally, let us focus on the separation between two uni-
form phases. We found that some of the effects of the size
and charge asymmetry are correctly predicted already on the
MF level of our theory �Sec. V�. However, on the MF level
the gas-liquid separation is preempted by the instability with
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~
η ∼∆ρ

~
−

k( ) k( )
~ ~
φ ∼∆ρφ ∼∆ρ −

k( ) k( )
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T*=
3cos k

k 2

~
η ∼∆ρ

~
+

~ ~
φ ∼∆ρφ ∼∆ρ +

C

ζ

ζT*=T*( )

FIG. 20. Dominant eigenmodes for � ,�→1 �� ,Z→�� in differ-
ent parts of the phase diagram. As discussed in Sec. III B, the fields
� and � dominate below and above the dashed line, respectively.
The relation between the eigenmodes and �
� is given in Eqs. �90�
and �91�. The neglected contributions to the OP’s are O�1/Z�.
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FIG. 21. �Top� The maximum temperature at the MF spinodal as
a function of 0.46��=��1 �� and � are defined in Eqs. �11� and
�12�, respectively�. The volume fraction corresponding to the maxi-
mum decreases from 0.262 to 0.112 for �=� increasing from 0.46
to 0.95 and for �=��0.95 stays almost unchanged. �Bottom�
T*�0.5� as a function of 0��=��0.4. �=0.5 is arbitrarily chosen,
because the structural line T*��� increases monotonically as a func-
tion of � for �=��0.4. T* is in reduced �dimensionless� units �Eq.
�13��, and � and � are dimensionless.
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respect to the periodic ordering, except from the case where
such ordering is suppressed by geometrical constraints. This
fact agrees with earlier MF results for the RPM �42,53,61�.
In fact, on the MF level no phase separation is found in the
RPM; the phase separation is induced by the charge-charge
correlations �1,42,53,61,62�. Studies beyond MF are required
to determine for what parts of the parameter space
�� ,T* ;� ,�� the phase separation is indeed preempted by the
crystallization, and how the critical point varies with � and �.
Returning to the clustering associated with the phase separa-
tion we should note that phenomena occurring at the very
short-length scale cannot be accurately described by the
coarse-grained theory. It is not clear to what extent the clus-
tering of ions is associated with the short-distance behavior
of the correlation functions, and to what extent it is induced
by collective phenomena. Studies beyond the stability analy-
sis of MF may shed light on this question.

Short-range interactions of different origin �including
solvent-induced effective interactions between solute mol-
ecules� also play an important role for the phase behavior
�3�. Such short-range interactions can be included in the
field-theoretic approach by supplementing the energy contri-
bution to MF in Eq. �7� with additional terms.
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APPENDIX A

The quantities a�� in Eq. �20� are obtained from the ex-
plicit expressions for the chemical potentials in the hard-

sphere mixture derived in Ref. �49�. Direct differentiations
lead to the following expressions:

a++ =
1


0+
* +

�r+
3

6

 8

1 − �
+

6r+
2Y + 15r+X + r+

3s

�1 − ��2

+
18r+

2X2 + 6r+
3XY

�1 − ��3 +
9r+

3X3

�1 − ��4� , �A1�

with the analogous expression for a−−,

a+− =
�

6

 8

1 − �
+

2r+r−�6 + r+r−�X + 8r+
2r−

2Y

�1 − ��2

+
18r+

2r−
2X2 + 6r+

3r−
3XY

�1 − ��3 +
9r+

3r−
3X3

�1 − ��4� , �A2�

where s, �, and r± are defined in Eqs. �15�, �14�, and �24�,
and following Ref. �49� we have introduced the notation

X =
�

6
�r+

2
0+
* + r−

2
0−
* � = s�1 + �2 − 2��� , �A3�

Y =
�

6
�r+
0+

* + r−
0−
* � = s�1 − ��� . �A4�

APPENDIX B

The functions b and d introduced in Eq. �58� are defined
by

b = �a++Z−1 + a−−Z�cos k cos�k�� + �a++Z−1

− a−−Z�sin k sin�k�� + 2a+− cos k , �B1�

d = a++a−− − a+−
2 =

1


0+
* 
0−

*

�1 + 2��2

�1 − ��4 � 0. �B2�
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